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Correlations between hidden units in multilayer neural networks and replica symmetry breaking

D. Malzahn and A. Engel
Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t, Postfach 4120, D-39016 Magdeburg, Federal Republic of German

~Received 19 February 1999!

We consider feed-forward neural networks with one hidden layer, tree architecture, and a fixed hidden-to-
output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica
symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distribu-
tions determine the probability of finding a specific activation pattern of the hidden units as well as the
corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We
find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry
breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the
PARITY, COMMITTEE, andAND machines withK53 hidden units and nonoverlapping receptive fields.
@S1063-651X~99!10507-5#

PACS number~s!: 87.18.Sn, 05.20.2y
er

n
ra

o
lle
pli
ffi

io

or

e
a

er
p

o
n

n-
es
e
o
te
it

c-
th
N

ef
s-
he

ive

n
-

l

al

or
the
n

n-

-

the
at
I. INTRODUCTION

Multilayer neural networks~MLN ! are more powerful de-
vices for information processing than the single-layer p
ceptron because of the possibility ofdifferentactivation pat-
terns, so-called internal representations~IR!, at the hidden
units for thesameinput-output mapping. It is well known
that the correlations between the activities at the hidden u
are crucial for the understanding of the storage and gene
zation properties of a MLN@1–6#. A particular simple situ-
ation to study these correlations is the implementation
random input-output mappings by the network, the so-ca
storage problem, near the storage capacity. Using the re
trick and assuming replica symmetry the correlation coe
cients building up in this case were calculated in@6# and
shown to be characteristic for the prewired Boolean funct
between hidden layer and output. Conversely,prescribing
these correlations the storage properties of the netw
change@7#.

The assumption of replica symmetry~RS! in this calcula-
tion is somewhat doubtful. In fact it is well known that th
storage capacity of MLN is strongly modified by replic
symmetry breaking~RSB! @8–10#, which is due to the very
possibility of different internal representations. Moreov
even the distribution of the output field of a simple perce
tron is influenced by RSB effects@11,12#.

In the present paper we elucidate the impact of RSB
the correlation coefficients between the activity of differe
hidden units in MLN with one hidden layer and no
overlapping receptive fields. The central quantity of inter
is the joint probability distribution for the local fields at th
hidden units. In the general part of this paper we show h
this distribution can be calculated both in RS and in one-s
RSB. For a detailed analysis we then specialize to MLN w
K53 hidden units and discuss, in particular, thePARITY,
COMMITTEE and AND machines. Together with the corre
tions from one-step RSB the RS results give insight into
division of labor between different subperceptrons in ML
and the role of RSB. Calculating finally the correlation co
ficients we find that although modifying the local field di
tribution markedly RSB gives rise to minor corrections to t
correlation coefficients only.
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II. GENERAL RESULTS

We consider feed-forward neural networks withN inputs
jk

n , one hidden layer ofK units t1 ,t2 , . . . ,tK , and a single
output s. The hidden units have nonoverlapping recept
fields of dimensionN/K ~tree structure!. They are deter-
mined by the inputs via spherical coupling vectorsJk

PIRN/K,Jk
25N/K according to tk5sgn(hk) with hk

5JkjkAK/N denoting the local fields. We call an activatio
pattern (t1

n ,t2
n , . . . ,tK

n ) of the hidden units an internal rep
resentation~IR!. The outputs of the MLN is a fixed Boolean
function s5F(t1 , . . . ,tK) of the IR. Examples of specia
interest include thePARITY machine,F($tk

n%)5)k51
K tk

n , the
COMMITTEE machine,F($tk

n%)5sgn((k51
K tk

n), and theAND

machine,F511 if all tk511; else F521.
All IR consistent with a desired output are called leg

internal representations~LIR!. The number of and similarity
between LIR to a given output specifies the division of lab
taking place between the different perceptrons forming
MLN. It is quantitatively characterized by the correlatio
coefficients

cn5^^st i 1
t i 2

•••t i n
&&, ~1!

n51, . . . ,K, where^^•••&& denotes the average over the i
puts and the output andi 1 , . . . ,i n is a subset ofn natural
numbers between 1 andK. For permutation symmetric Bool
ean functions, thecn only depend onn and not on the par-
ticular choice of this subset.

We focus on the so-called storage problem in which
inputsjk

n and the outputssn are generated independently
random according to the probability distributions

p~sn!5
d~sn21!1d~sn11!

2
~2!

and

p~jk,i
n !5

1

A2p
expS 2

1

2
~jk,i

n !2D , ~3!

wherek51, . . . ,K, i 51, . . . ,N/K, andn51, . . . ,aN.
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The basic quantity which gives us access to the proba
ity of the LIR and to the correlation coefficients is the d
tribution p(hj ) of the local fieldshj at the j th hidden unit. It
is given by

p~hj !5K K 1

ZE )
k51

K

dm~Jk!dm~lk
n!

3 )
n51

aN

Q~snF„sgn~l1
n!, . . . ,sgn~lK

n !…!

3d~hj2l j
1!L L

$j
k
n%,sn

. ~4!

^^ . . . && denotes the average over all stored input-output p
terns.Z denotes the partition function

Z5E )
k51

K

dm~Jk!dm~lk
n!

3 )
n51

aN

Q~snF„sgn~l1
n!, . . . ,sgn~lK

n !…!, ~5!
il-

t-

dm(Jk) the measure on the Gardner sphere@13#

dm~Jk!5dS Jk
22

N

K D dJk

A2peN/K
, ~6!

anddm(lk
n) the integration measure

dm~lk
n!5dS lk

n2Jkjk
nAK

ND dlk
n . ~7!

We use the replica trick 1/Z5 limn˜0Z n21 in Eq. ~4! to
perform the average over the inputs$jk

n% and introduce the
overlapsqk

ab5Jk
aJk

b/(N/K) between different replicasa,b of
a coupling vectorJk of hidden unitk. We will consider only
permutation symmetric BooleansF. Hence all hidden units
have the same statistical properties implyingp(hk)5p(h)
and qk

ab5qab with k51, . . . ,K. Equation ~4! takes on the
form
.

tput
p~hj !5 lim
n˜0

E )
a,b

dqab^^p~hj us!&&s exp[(N/2)lndet(Q)1(aN21)^^ ln G1(Qus)&&s] ~8!

in terms of the (n3n)-dimensional order parameter matrixQ whereQaa51 andQab5qab. Here

p~hj us!5E )
k,a

dlk
adxk

a

2p
expS (

k,a
F ixk

alk
a2

1

2
~xk

a!2G2 (
k,a,b

xk
axk

bqabD)
a

Q~sF„$sgn~lk
a!%…!d~hj2l1

1!, ~9!

and the expression forG1(Qus) is specified in the Appendix, Eq.~A6! together with some more details of the calculation
In the limit N˜` the integral~8! is dominated by the saddle point values of the order parametersqab which extremize the

partition function

Z5expS N extrqabH lim
n˜0

1

2
ln det~Q!1a^^ ln G1~Qus!&&s

n
J D . ~10!

In the following, we simplify Eqs.~9! and ~10! using the assumption that the order parameter matrixQ is either replica
symmetric or describes one-step replica symmetry breaking. We will always consider the saturation limita˜ac since the
expressions then simplify and the correlations become most characteristic in this limit. The RS case is specified by@14#

qab5H 1 if a5b

q else.
~11!

The saturation limita˜ac is characterized by the existence of a unique solutionJk , e.g.,q˜1. We then get

p~hus!5E )
k51

K

Dyk lim
q˜1

S expS 2
1

2
(h1y1Aq…2/~12q! D
A2p~12q!

FLIR~sudh1 ,sgn(h)!

FLIR~s!
D ~12!

for the conditional probability to find a specific valueh of the postsynaptical potential under the constraint of a given ou
s. The terms abbreviated by
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FLIR~sudh1 ,sgn(h)!ª (
all sets(h1 , . . . ,hK)

dh1 ,sgn(h)ds,F(h1 , . . . ,hK))
k52

K

HS hkykA q

12qD , ~13!

FLIR~s!ª (
all sets(h1 , . . . ,hK)

ds,F(h1 , . . . ,hK))
k51

K

HS hkykA q

12qD ~14!

ensure that only LIR for the respective value ofs contribute to the sum in Eq.~12!. As usual we have used the error functio
H(x)5*x

`Dt with Dt5exp(2t2/2)dt/A2p.
Let us now turn to main features of the solution within the ansatz of one-step RSB. Then the following form for the

parameter matrix is assumed@14#:

qab5H 1 if a5b

q1 if ua2bu,m

q0 else.

~15!

Accordingly, there are two overlap scales characterizing the similarity between coupling vectors belonging to the sa
different regions of the solution space, respectively.

Using this ansatz we find after standard manipulations@14# for the probability distribution of the local field for a specifi
outputs,

p~hus!5E )
k51

K

Dyk

E )
k51

K

Dzk

1

A2p~12q1!
expS 2

~h1y1Aq01z1Aq12q0!2

2~12q1!
D FLIR~sudh1 ,sgn(h)!

~FLIR~s!!12m

E )
k51

K

Dzk@FLIR~s!#m

, ~16!

where now

FLIR~sudh1 ,sgn(h)!ª (
all sets (h1 , . . . ,hK)

dh1 ,sgn(h)ds,F(h1 , . . . ,hK))
k52

K

HS hk

ykAq01zkAq12q0

A12q1
D , ~17!

FLIR~s!ª (
all sets (h1 , . . . ,hK)

ds,F(h1 , . . . ,hK))
k51

K

HS hk

ykAq01zkAq12q0

A12q1
D . ~18!

These expressions simplify in the saturation limita˜ac in which one findsq1˜1 andm5w(12q1)˜0. The remaining
order parametersw,q0 are given by the saddle point equations corresponding to the following expression for the s
capacityac:

ac5min
q0 ,wF ln@11w~12q0!#1q0w/@11w~12q0!#

22 lim
q1˜1

K K E )
k

Dyk lnH E )
k

Dzk~FLIR~s!!mJ L L
s

G . ~19!
c

s

As in the RS case the analytical and numerical analysis
these expressions for concrete situations needs some
~see next section!.

To finally obtain p(h) we must average Eqs.~12! and
~16! over the two possible outputss561,

p~h!5^^p~hus!&&s . ~20!

From this probability distribution we find the distribution
p(t1 , . . . ,tK) of the LIR according to
of
are p~t1 , . . . ,tK!5E

2`

`

)
k51

K

dhkQ~tkhk!p~hk!. ~21!

The correlation coefficientscn , n51, . . . ,K are then given
by

cn5 (
all sets(h1 , . . . ,hK)

sh1h2•••hnds,F(h1 ,h2 , . . . ,hK)

3p~h1 ,h2 , . . . ,hK!. ~22!
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The Kroneckerd in Eq. ~22! restricts the sum to all LIR of
the outputs. Equation~22! is valid as long as the patter
load of the MLN does not exceed its saturation thresholdac .

III. SPECIFIC EXAMPLES WITH K53 HIDDEN UNITS

In this section we apply the general formalism develop
above to the analysis of simple versions of three popu
examples of MLN, namely, thePARITY, COMMITTEE, and
AND machines, each withK53 hidden units. We start with
the RS results.

A. Replica symmetry

In COMMITTEE and PARITY machines there is for ever
LIR of output s511 an IR with all signs reversed tha
realizes output s521. Therefore p(h)5p(hu11)
5p(hu21) and the final average overs in Eq. ~20! is trivial.
Analyzing Eqs.~13! and ~14! in the limit q˜1 one realizes
that they depend on both the sign and values of all integ
tion variablesyk . Expression~13! as well as Eq.~14! are
either equal to one or exponentially small in some or
integration variables. The quotient of both figuring in E
~12! can hence become one, zero, or singular with respec
y1. Whenever it is one the integral in Eq.~12! gives rise to
d(h1y1) for q˜1. Whenever the quotient is singular a co
tribution d(h) results.

Keeping track of the different contributions arising in th
way we find for theK53 COMMITTEE machine

p~h!5Q~2h!
e2h2/2

A2p
H2~h!1

5

24
d1~h!1Q~h!

e2h2/2

A2p
~23!

and for thePARITY machine

p~h!5
1

2

e2h2/2

A2p
1

e2h2/2

A2p
4E

0

uhu
DtH~ t !1

1

12
d2~h!

1
1

12
d1~h!. ~24!

Note thatp(h) for the PARITY machine is an even functio
due to the additional symmetry of the Boolean functionF for
this case.

In theAND machine the outputs511 can be realized by
one LIR only whereas the outputs521 results from all the
remaining 2K21 IR. Hencep(hu11) and p(hu21) differ
significantly. In fact we find for theK53 AND machine

p~hu11!5Q~h!
e2h2/2

A2p
1

1

2
d1~h!, ~25!

p~hu21!5Q~2h!
e2h2/2

A2p
1

1

24
d2~h!

1Q~h!
e2h2/2

A2p
@12H2~h!#, ~26!
d
r

a-

ll
.
toand p(h)5@p(hu11)1p(hu21)#/2. Note that we have in-
troduced two different singular contributionsd2(h) and
d1(h) in Eqs.~23!, ~24! and Eqs.~25!, ~26!. The reason for
this is that the weight ofd1(h) adds to the probability of
positive local fields whereas the weight ofd2(h) adds to that
of negative local fields. This distinction will be importan
later when calculating the correlation coefficients fromp(h)
@cf. Eq.~21!#. The results~23!, ~24!, and~25!, ~26! are shown
as the dashed lines in Figs. 1–3, respectively.

These RS results are in fact very intuitive and can be e
quantitatively understood by assuming that the outcome
Gardner calculation corresponds to the result of a learn
process in which the initially wrong IR are eliminated wi
least adjustment@6#. Due to the permutation symmetry be
tween the hidden units we may consider only the local fi
h1 of the first unit of the hidden layer. Before learning th

FIG. 1. Distribution of the local fieldh at the hidden units of a
K53 COMMITTEE tree in one-step RSB~bold! and RS~dashed!.
d1(h) is represented by adding its weight to the continuous par
the curve whereby, for a better presentation, the RS peak
shifted slightly to the right.

FIG. 2. Distribution of the local fieldh at the hidden units of a
K53 PARITY tree in one-step RSB~bold! and RS~dashed!. d2(h)
andd1(h) are represented by adding their weights to the conti
ous part of the curve.
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FIG. 3. Distributionp(h) of the local fieldh at the hidden units of aK53 AND tree in RS~left!. The two panels to the right display it
constituentsp(hus511) andp(hus521) according to Eqs.~25! and~26!. We found no RSB.d2(h) andd1(h) are represented by addin
their weights to the continuous part of the curve.
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couplingsJk are uncorrelated with the patterns and the lo
field h1 is consequently Gaussian distributed with zero me
and unit variance.

Now consider, e.g., thePARITY machine. Due to the dis
cussed symmetries it is sufficient to analyze the cases5
11 andh1.0. If h2 and h3 are equal in sign, which will
occur with probability 1/2, there is no need to modify th
couplings at all. This gives rise to the first term in Eq.~24!
which is just the original Gaussian and describes the cha
that a randomly found IR withh1.0 is legal. If h2 andh3
differ in sign the IR is illegal and the couplingsJk have to be
modified until one of the hidden units changes sign. In
optimal learning scenario the local field with the smalle
magnitude would be selected and the corresponding coup
vector would be modified such that the field just bare
changes sign. Henceh1 remains still unmodified if eitherh2
or h3 is smaller in absolute value which gives rise to t
second term in Eq.~24!. Finally, if really h1 is selected for
the sign change, which will happen with probability 1/6 f
symmetry reasons, it will after learning be either sligh
smaller or slightly larger than zero, which is the origin of t
last two terms in Eq.~24!.

With a similar reasoning it is possible to rederive the R
result for theCOMMITTEE machine. Again it is sufficient to
consider the cases511. If h1.0 initially it will not be
modified, which gives rise to the last term in Eq.~23!. If, on
the other hand,h1,0, prior to learning it will not be modi-
fied only if bothh2 andh3 are either positive from the sta
or easier to make positive thanh1. Hence a negativeh1 sur-
vives the learning process if the other two fields are b
larger. This is described by the first term in Eq.~23!. Finally,
with probability 5/24 we find thath1,0 and eitherh2 or h3
is even smaller thanh1 and therefore harder to correct. I
this case the learning would shifth1 to positive values as
described by the second term in Eq.~23!. The resulting dis-
tribution of local fields will hence have a dip for negativ
values of small absolute value clearly visible in Fig. 1.

The case of theAND machine is the simplest. The outp
s511 requires all local fields to be positive. Hence positi
fields are not modified, negative ones are shifted to 01 re-
sulting immediately in Eq.~25! which is, of course, identica
to the result for the single-layer perceptron@15,16#. In the
l
n

ce

n
t
ng

h

case of a negative outputs521 only the IR (1,1,1) is
illegal and must be eliminated which is again done by cha
ing the sign of the smallest field. This gives rise to Eq.~26!.

It is finally interesting to compare the distribution of loc
fields found above with that for a single perceptron abo
saturation@17,11#. The individual perceptrons in a MLN cer
tainly operate above their storage limit even when the s
age capacity of the MLN is not yet reached. The most
markable feature of the distribution of local fields for
perceptron above saturation minimizing the number of m
classified inputs is agap separating positive from negativ
values. Being intimately related to the failure of any fini
level of RSB for this problem this gap is believed to ex
even in the solution with continuous RSB@12#. On the other
hand, none of the distributions for MLN showed a gap.

As should be clear from the above qualitative discuss
the reason for this is quite simple. The single percept
above saturation has to reject some inputs as not corre
classifiable. In order to keep the number of these err
smallest it chooses those with negative fields of large ab
lute value. Inputs with initially only slightly negative loca
fields will be learned whereby their local fields shift to va
ues just above zero. In this way the gap occurs. In MLN,
the other hand, there is no reason to shift all negative lo
fields of small absolute value because the correct output
be realized by the other hidden units. Therefore one will
find an interval ofh values for whichp(h) is strictly zero.
On the other hand, the tendency that predominantly field
small absolute value will be modified in the learning proce
is clearly shown by the dips of the distribution function
aroundh50 ~cf. Figs. 1–3!.

B. Replica symmetry breaking

Let us now discuss how the above results get modified
RSB. The analytical and subsequent numerical analysis
Eqs. ~16!–~19! for the K53 machines under consideratio
needs some care in order not to miss the various sing
contributions. We have first to determine the values of
order parameters at the saddle point using Eq.~19!. In the
saturation limit q1˜1, @FLIR(s)#m is dominated by one
specific LIR which is selected among all other LIR by th
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TABLE I. SaturatedK53 machines: Integrated features of the probability distributionp(h) of the local
field. Corrections by one-step RSB are given in percent of the respective RS value. Dashes indicat
respective singular contribution does not occur~COMMITTEE! or that we found no RSB~AND!.

Negative non- Singular Singular Positive non-
zero fields contribution contribution zero fields

lime˜0*2`
2ueup(h)dh d2(h) d1(h) lime˜0* ueu

` p(h)dh
K53 machine RS 1-RSB RS 1-RSB RS 1-RSB RS 1-RSB

COMMITTEE 7/24 21.9% – – 5/24 242.3% 1/2 118.9%

PARITY 5/12 110.3% 1/12 251.8% 1/12 251.8% 5/12 110.3%

AND 1/4 – 1/48 – 1/4 – 23/48 –
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sign and absolute value of the compound variablesvk

5ykAq01zkAq12q0. FLIR(s)] m either tends to 1 or be
comes exponentially small in one or more compound v
ablesvk . Transforming the integration fromzk space tovk
space allows us to reduce theK-fold z integral to a one-
dimensional integral. This is performed numerically
Rhomberg integration whereas the outeryk integrals are
done using Gauss-Legendre quadrature@18#.

The saddle point equation~19! is solved with a standard
minimization routine~Powells method in two dimension
@18#!. The values we get for the order parameters and for
storage capacity are consistent with those obtained ea
For theK53 PARITY machine we findq050, w.67.2, and
ac

RSB.5 in agreement with@8#. In the case of theK53
COMMITTEE machine we getq0.0.64, w.21.2, andac

RSB

.3.14, a result somewhat larger than reported previou
@9,10#. TheK53 AND machine finally does not show RSB
all and we find accordinglyq0˜1, w˜` together with
ac

AND51.31.
In a second step, we use these values of the order pa

etersw,q0 to calculate the respective distribution of loc
fields ~16!. The distribution functionsp(h) obtained in this
way are included as full lines in Figs. 1–3. Table I quantifi
the main changes. The main modification of the distribut
functions of local fields that occurs in one-step RSB is
redistribution of probability from thed peaks ath560 to
the continuous part of the distribution around zero result
in a reduction of the weight of the singular parts of rough
50%. This gives rise to a less pronounced dip of the dis
bution functions aroundh50 and is qualitatively similar to
the RSB modifications for a single perceptron above sat
tion @11#. From the results for thePARITY machine it is con-
ceivable that the central peak may get reduced furthe
higher orders of RSB are included and that it might even
ally disappear completely in the full Parisi solution usi
continuous RSB. For all machines the probability of fiel
with large absolute values is hardly affected by RSB.

For the AND machine we did not find RSB at all. Th
numerical solution of the saddle point equations only ga
the RSB resultq051, w˜`. We therefore suspect that rep
lica symmetry is correct for theAND machine. This is also in
accordance with the rule of thumb that RSB is necessar
the solution space is disconnected. In theAND machine the
output s511 can be realized only by one LIR whic
clearly corresponds to a connected~even convex! solution
space. The outputs521 is realized by all remaining IR
i-

e
er.

ly

m-

s
n
a

g

i-

a-

if
-

e

if

which as the complement of the previous solution space m
be connected too.

We have finally to clarify how much the modification
found for the distributions of local fields will change th
probabilities of the internal representations and the corr
tion coefficientscn depending only on thesign of the local
fields.

This question is, in fact, nontrivial only in the case of th
COMMITTEE machine. For theAND machine no RSB occurs a
all and for thePARITY machine the correlation coefficient
are completely determined by the symmetry of the Boole
function F between hidden units and output.

For theCOMMITTEE machine we find that the probabilit
of the LIR ~1,1,1! is shifted from its RS value 0.1250 t
0.1417, which is an increase by roughly 13%, whereas
probability of the three remaining LIR~consisting of two
pluses and one minus each! is reduced by 1.9% from 0.291
to 0.2861. Qualitatively this means that more inputs
stored with the LIR~1,1,1! than the fraction 1/8 that had
this LIR already by chance before learning. The learn
process hence does not shift illegal IR just up to the decis
boundary of the BooleanF but in some cases the correlation
between inputsj and couplingsJ neglected in RS allow even
the safer LIR ~1,1,1!.

Using Eq.~22! we can now also calculate the correlatio
coefficients and find thatc1 increases by 2.7% from its RS
value 5/12,c2 decreases in absolute value by 13.3% from
RS value21/6, andc3 decreases in absolute value by 4.5
from its RS value23/4. This confirms the prediction of@6#
that although crucial for the storage capacity RSB will ha
only a minor influence on the correlation coefficients
MLN.

IV. SUMMARY

Generalizing the calculation of the distribution function
local fields for the single-layer perceptron we introduced
general formalism to determine the joint probability distrib
tion p(h1 , . . . ,hK) of local fields at theK hidden units of a
two-layer neural network of tree architecture with fixe
Boolean function between hidden layer and output both
replica symmetry and in one-step replica symmetry break
Explicit results were obtained for thePARITY, COMMITTEE,
and AND machine withK53 hidden units in the saturatio
limit a˜ac . Although the individual perceptrons are by fa
overloaded there is no gap in the distribution of local fie
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as known from a single perceptron above saturation. The
no RSB for theAND machine which we attribute to the con
nected solution space for this architecture. For thePARITY

andCOMMITTEE machine we find as a result of RSB a slig
redistribution of probability from the singular parts ath5
60 to the continuous part around the origin. The correlat
coefficientscn characterizing the correlations between t
legal internal representations are not modified by RSB
the PARITY machine since in this case they are fixed alrea
by symmetries. For theCOMMITTEE machine the changes o
the correlation coefficients are rather small and the RS
sults derived in@6# may serve as useful approximations.

APPENDIX: REPLICA CALCULATION

In this appendix we give some more details on the cal
lation of the distribution functionp(h) of the local fields at
the hidden units following Gardner’s approach@15#.

Introducing the replica trick 1/Z5 limn˜0Z n21 into Eq.
~4! yields

p~h!5 lim
n˜0

K K E )
k,a

dm~Jk
a!dm~lk

n,a!

3)
n,a

Q~snF„$sgn~lk
n,a!%…!d~h2l1

1,a!L L
$j

k
n%,sn

,

~A1!

with replica indexa51, . . . ,n. In the integration measure
~6!, ~7! we replace thed functions by their integral form

dS ~Jk
a!22

N

K D5E dEk
a

4p
expF2

i

2
Ek

aS ~Jk
a!22

N

K D G ,
~A2!

dS lk
n,a2Jk

ajk
nAK

ND 5E dxk
n,a

2p
exp

3F ixk
n,aS lk

n,a2Jk
ajk

nAK

ND G .
~A3!

We now perform the average over the Gaussian dist
uted patternsjk,i

n ,i 51, . . . ,N/K and introduce the overlap
qk

ab5Jk
aJk

b/(N/K) of different replicas of the same perce
tron Jk as well as its conjugated variableFk

ab . From the
assumed permutation symmetry of the Boolean functionF
with respect to all hidden units we inferqk

ab5qab, Fk
ab

5Fab, andEk
a5Ea for all k51, . . . ,K. This gives rise to the

form

p~h!5 lim
n˜0

E )
a

dEa

4p E )
a,b

dqabdFab

2p~K/N!

3^^p~hus!&&s

3exp @~N/2!tr~QA!1~aN21!^^ ln G1~Qus!&&s

1N ln G2~A!#, ~A4!
is

n

r
y

e-

-

-

where Q and A denote the symmetric matricesQaa51,
QaÞb5qab andAaa5 iEa, AaÞb52 iF ab. Moreover,

p~hus!5E )
k,a

dlk
adxk

a

2p
expS (

k,a
F ixk

alk
a2

1

2
~xk

a!2G
2 (

k,a,b
xk

axk
bqabD)

a
Q~sF„$sgn~lk

a!%…!

3d~h2l1
1!, ~A5!

G1~Qus!5E )
k,a

dlk
adxk

a

2p
expS (

k,a
F ixk

alk
a2

1

2
~xk

a!2G
2 (

k,a,b
xk

axk
bqabD)

a
Q~sF„$sgn~lk

a!%…!,

~A6!

G2~A!5E )
k,a

dJk
a

A2pe
expS 2

1

2 (
k;a,b

Jk
aAabJk

bD . ~A7!

In the limit N˜` the integral in Eq.~A4! is dominated
by the saddle point values of the order parametersEa , Fab,
andqab. Solving the saddle point equation with respect toEa

andFab yields A5Q21. Hence Eq.~A4! takes the form

p~h!5 lim
n˜0

E )
a,b

dqab

3^^p~hus!&&sexp[(N/2)lndet(Q)1(aN

21)^^ ln G1(Qus)&&s]. ~A8!

p(hus) can be calculated by assuming either RS or one-s
RSB for the matrixQ resulting in Eqs.~12! and~16!, respec-
tively.

The remaining saddle point condition for the matrixqab

has in one-step RSB~15! the form

extrq0 ,q1 ,mF q0

2@12q11m~q12q0!#

1
1

2m
lnS 11

m~q12q0!

12q1
D1

1

2
ln~12q1!

1
a

m K K E )
k

Dyk lnH E )
k

Dzk~FLIR~s!!mJ L L
s
G .

~A9!

It determines a set of order parameters$q1 ,q0 ,m% for
every pattern load below the storage capacitya<ac . The
abbreviationFLIR(s) is defined by Eq.~18!. The angular
bracketŝ ^•••&&s indicate the average over the two possib
outputss561.
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