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Correlations between hidden units in multilayer neural networks and replica symmetry breaking
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We consider feed-forward neural networks with one hidden layer, tree architecture, and a fixed hidden-to-
output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica
symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distribu-
tions determine the probability of finding a specific activation pattern of the hidden units as well as the
corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We
find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry
breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the
PARITY, COMMITTEE, andAND machines withK=3 hidden units and nonoverlapping receptive fields.
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|. INTRODUCTION Il. GENERAL RESULTS

Multilayer neural network$MLN) are more powerful de- _, we conmder feed—forwar_d neural networks \NNthUtS
&, one hidden layer oK units 74,75, .. .,7¢, and a single

vices for information processing than the single-layer per'outputa The hidden units have nonoverlapping receptive
ceptron because of the possibility differentactivation pat- fields of. dimensionN/K_(tree structurg They are deter-
terns, so-called internal representatidiiR), at the hidden mined by the inputs via spherical coupling vectals
units for thesameinput-output mapping. It is well known cIRVK 2=N/K  according to ,=sgn() with hy

that the correlations between the activities at the hidden units e . . L
are crucial for the understanding of the storage and generalf‘]kgk K/N denoting the local fields. We call an activation

zation properties of a MLN'1—6]. A particular simple situ- Patteérn 1,73, .. .,7¢) of the hidden units an internal rep-
ation to study these correlations is the implementation ofesentatior{iR). The outpuir of the MLN is a fixed Boolean
random input-output mappings by the network, the so-calledunction o=F(7y, ... ,7) of the IR. Exampleﬁ of special
storage problem, near the storage capacity. Using the replidaterest include theAriTy machine,F({r}) =I,_; 7, the
trick and assuming replica symmetry the correlation coeffi-COMMITTEE machine,F({7¢})=sgn(E_,7;), and theanD
cients building up in this case were calculated[@ and machineF=+1 ifall n=+1; else F=-1.
shown to be characteristic for the prewired Boolean function All IR consistent with a desired output are called legal
between hidden layer and output. Conversglgescribing  internal representatior{&IR). The number of and similarity
these correlations the storage properties of the networkBetween LIR to a given output specifies the division of labor
changg7]. taking place between the different perceptrons forming the
The assumption of replica symmet(gS) in this calcula- MLN. It is quantitatively characterized by the correlation
tion is somewhat doubtful. In fact it is well known that the coefficients
storage capacity of MLN is strongly modified by replica
symmetry breakindRSB) [8—10|, which is due to the very Cn=((o7i,Ti, - Ti ) @)
possibility of different internal representations. Moreover, _
even the distribution of the output field of a simple percep-"=1.-.. K, where((- - -)) denotes the average over the in-
tron is influenced by RSB effecfd1,12. puts and the output and, ..., is a _subset oh n_atural
In the present paper we elucidate the impact of RSB ofiumbers between 1 arkl For permutation symmetric Bool-
the correlation coefficients between the activity of different€@n functions, the, only depend om and not on the par-
hidden units in MLN with one hidden layer and non- ticular choice of this subset. S
overlapping receptive fields. The central quantity of interest We focus on the so-called storage problem in which the
is the joint probability distribution for the local fields at the inputs & and the outputsr” are generated independently at
hidden units. In the general part of this paper we show howandom according to the probability distributions
this distribution can be calculated both in RS and in one-step , ,
RSB. For a detailed analysis we then specialize to MLN with (") = o(o"—1)+8(e"+1) @)
K=3 hidden units and discuss, in particular, therITY, 2
coMMITTEE and AND machines. Together with the correc-
tions from one-step RSB the RS results give insight into thexnd
division of labor between different subperceptrons in MLN
and the role of RSB. Calculating finally the correlation coef-
ficients we find that although modifying the local field dis-
tribution markedly RSB gives rise to minor corrections to the
correlation coefficients only. wherek=1,... K, i=1,... N/K, andv=1,... aN.
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The basic quantity which gives us access to the probabild,(J,) the measure on the Gardner sphgirg]
ity of the LIR and to the correlation coefficients is the dis-
tribution p(h;) of the local fieldsh; at thejth hidden unit. It

is given by dJ,
— 2 | Tk
10K Al hd= 5(Jk K) J2meN/K’ ©
o= {5/ IT duoduonp
Z) =1
aN anddu(\y) the integration measure
xI1 ©(oFisgnng), ... sging))
14 14 vV K 14
X@(hj_le)>> | w AN = 8| N\ g | I Y
A
((...)) denotes the average over all stored input-output pat- e use the replica trick =lim,_,,Z""! in Eq. (4) to
terns. Z denotes the partition function perform the average over the inpyi&} and introduce the
K overlapsq2®=J2J¢/(N/K) between different replicas,b of
Z:J IT duaoduny) a coupling vectod, of hidden unitk. We will consider only
k=1 permutation symmetric Boolearis Hence all hidden units
oN have the same statistical properties implyipth,) =p(h)
> H O (o F(sgri\Y), . .. ,SOHAL))), (5) ?nd q§b= q?® with k=1,... K. Equation(4) takes on the
V=1 orm
p(hj)=lim J al;[b dg*®((p(hj|0))), exp[(N/2)Indet@Q) + (aN—1){(In G1(Q[a))),] 8
n—0

in terms of the X n)-dimensional order parameter matfxwhereQ®®=1 andQ’=qg2®. Here

ab

1
AT 5 (D)2

dAgdxg
D(h,-|tr)=flkl1 > exp{kz;,‘

= 2 x| IT @(aF{sgrinp)) achj—ad), )
k,a<b a
and the expression fdB,(Q|o) is specified in the Appendix, E4A6) together with some more details of the calculation.

In the limit N—o the integral(8) is dominated by the saddle point values of the order paramgi@nshich extremize the
partition function

1
5IndetQ)+a((In G1(Qlo))) s

Z=exp| N extrgan| lim . (10
n—0 n

In the following, we simplify Eqs(9) and (10) using the assumption that the order parameter m&riz either replica
symmetric or describes one-step replica symmetry breaking. We will always consider the saturatien-imitsince the
expressions then simplify and the correlations become most characteristic in this limit. The RS case is spddified by

ab_

q =

1 if a=b
[ 1D

g else.

The saturation limita— « is characterized by the existence of a unique solufigne.g.,g—1. We then get

1
- 2 _
exp( 2(h+Y1VQ) /(1-q) CDLlR(U'l‘svl,Sgn@))

K
p(h|0)=f I(E[l Dyk(!iTl V2m(1—q) @ r(0) 12

for the conditional probability to find a specific valheof the postsynaptical potential under the constraint of a given output
o. The terms abbreviated by
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q)LIR(0'|5r;l,sgn(h))’: 2 ) 5nl,sgn(n)5o,F(771 ..... 7%)

[ q
H —) , 13
all sets@q, . . ., 7K ( Yk 1-q (13
° [q
® - 5 [T H —) 14
Lr(o) Al sets(mE Qo FCn. . mold, ( MYk 1-q (14)

----- 7K

=
==

ensure that only LIR for the respective valuecmotontribute to the sum in Eq12). As usual we have used the error function
H(x)=J%Dt with Dt=exp(—t%2)dt/\27.

Let us now turn to main features of the solution within the ansatz of one-step RSB. Then the following form for the order
parameter matrix is assumgti]:

1 if a=b
q?=1¢ a; if |a—bl<m (15)
do else.

Accordingly, there are two overlap scales characterizing the similarity between coupling vectors belonging to the same and
different regions of the solution space, respectively.

Using this ansatz we find after standard manipulatidag for the probability distribution of the local field for a specific
outputo,

CI)L|R(0'| 5ql,sgn(h))
((I)LlR((T)) tem

« 1
H Dzk—exp(
<t Va2m(l-qy)

B (h+Y1\/%+21 Va1 —0p)?

2(1-qy)

K
p<h|a>=j kljl Dyy

. . (18
jkﬂl Dzk[q)LIR(U)]m
where now
duols, e S s 0 i+ 2ca:— ao a7
LIR 77.,59n() allsets (=, ) 71.59n0) O F(7q, ..., nK)k:Z Mk \/1_q1 )
K '
yk\/%‘{'zk d1—do
Dur(o)= > 8o k(ny, . mo Ll H| 7 . (18)
allsets @y, ..., 7K) k=1 \/1—q1

These expressions simplify in the saturation lim# « in which one findsg;—1 andm=w(1—-q;)—0. The remaining
order parameters/,q, are given by the saddle point equations corresponding to the following expression for the storage
capacitya,:

o IN[1+w(1—qo)]+qowW/[1+W(1—qo)]
a.=min

| <2 { [T one] [ T oxwo)])) |

gq—1

(19

As in the RS case the analytical and numerical analysis of « K
these expressions for concrete situations needs some care P(71, ... ,TK):I H dh®(rh)pthy. (21
(see next section —ok=1

To finally obtainp(h) we must average Eq$12) and  Tne correlation coefficients,, n=1,... K are then given
(16) over the two possible outputs=*1, by

p(h)={(p(h|o))), - (20

From this probability distribution we find the distributions
p(7y,...,7x) of the LIR according to XP(71,72, -+ -1 7K)- (22

= g e 5
"an sets(n;. C7K) 772" IO F(ny.mp, - - - )
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The Kroneckers in Eq. (22) restricts the sum to all LIR of 0.8 r r r
the outputo. Equation(22) is valid as long as the pattern
load of the MLN does not exceed its saturation threslagld

06 |
Ill. SPECIFIC EXAMPLES WITH K=3 HIDDEN UNITS

In this section we apply the general formalism developed
above to the analysis of simple versions of three popular ph) 0.4 }
examples of MLN, namely, th@ARITY, COMMITTEE, and
AND machines, each witK=3 hidden units. We start with
the RS results. 02|

A. Replica symmetry

In cCOMMITTEE and PARITY machines there is for every 0.0
LIR of output c=+1 an IR with all signs reversed that
realizes output o=—1. Therefore p(h)=p(h|+1)

=p(h[—1) and the final average overin Eq.(20) is trivial. FIG. 1. Distribution of the local fielth at the hidden units of a
Analyzing Egs.(13) and(14) in the limit g—1 one realizes k=3 commwTtee tree in one-step RSEbold) and RS(dasheil

that they depend on both the sign and values of all integras, (n) is represented by adding its weight to the continuous part of
tion variablesy,. Expression(13) as well as Eq(14) are  the curve whereby, for a better presentation, the RS peak was
either equal to one or exponentially small in some or allshifted slightly to the right.

integration variables. The quotient of both figuring in Eq.

(12) can hence become one, zero, or singular with respect tQnqg p(h)=[p(h|+ 1)+ p(h| - 1)]/2. Note that we have in-

y1. Whenever it is one the integral in ECQL2) gives rise 0 yroquced two different singular contributions_(h) and

é(h+y,) for g—1. Whenever the quotient is singular a con- 8. (h) in Egs.(23), (24) and Egs(25), (26). The reason for

-4

postsynaptic potential h

tribution 5(h) results. o __ this is that the weight 0B, (h) adds to the probability of
Keepmg track of the different contr|but|c_)ns arising in this positive local fields whereas the weightaf (h) adds to that
way we find for theK =3 cOMMITTEE machine of negative local fields. This distinction will be important
22 5 o h?12 I[a':cer Wrzen)i:alzulatinglt;\e ():o(rre)latiog (co)efiiciints fr;r)](ﬂn)
—O(— 2 = cf. Eq.(21)]. The resultg23), (24), and(25), (26) are shown
p(M)=6(~h) \/; H (h)+245+(h)+®(h) \/; as the dashed lines in Figs. 1-3, respectively.
(23 These RS results are in fact very intuitive and can be even
quantitatively understood by assuming that the outcome of a
and for thePARITY machine Gardner calculation corresponds to the result of a learning
process in which the initially wrong IR are eliminated with
1e M2 g-h%2 1 least adjustmenft6]. Due to the permutation symmetry be-
p(h)== + 4f DtH(t)+-=46_(h) tween the hidden units we may consider only the local field
2 \2xm \/; 0 12 h, of the first unit of the hidden layer. Before learning the
1
+ 125+(h). (249 0.4
Note thatp(h) for the PARITY machine is an even function
due to the additional symmetry of the Boolean functiofor 03 r
this case.
In the AND machine the outputr=+1 can be realized by
one LIR only whereas the output= —1 results from all the phy g2 |

remaining ¥—1 IR. Hencep(h|+1) andp(h|—1) differ
significantly. In fact we find for th& =3 AND machine

—h22 01 F
p(h|+1)=®(h)T+§5+(h>, (25)
T
0.0
—h2/2 4

p(h| —1)=0(—h) 7 + Z‘r&*(h) postsynaptic potential h
\4rp

FIG. 2. Distribution of the local fieldh at the hidden units of a

e h2/2 K =3 PARITY tree in one-step RSBold) and RS(dashegl 5_(h)
+0(h) [1—- Hz(h)], (26) and 5, (h) are represented by adding their weights to the continu-
N2 ous part of the curve.
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FIG. 3. Distributionp(h) of the local fieldh at the hidden units of & =3 AND tree in RS(left). The two panels to the right display its
constituentp(h|o=+1) andp(h|o= —1) according to Eqg25) and(26). We found no RSBS_(h) andé, (h) are represented by adding
their weights to the continuous part of the curve.

couplingsJ, are uncorrelated with the patterns and the localcase of a negative output=—1 only the IR (+,+,+) is
field h; is consequently Gaussian distributed with zero mearillegal and must be eliminated which is again done by chang-
and unit variance. ing the sign of the smallest field. This gives rise to E2f).
Now consider, e.g., thearITy machine. Due to the dis- It is finally interesting to compare the distribution of local
cussed symmetries it is sufficient to analyze the case fields found above with that for a single perceptron above
+1 andh;>0. If h, andh; are equal in sign, which will saturatior[17,11. The individual perceptrons in a MLN cer-
occur with probability 1/2, there is no need to modify the tainly operate above their storage limit even when the stor-
couplings at all. This gives rise to the first term in EB4)  age capacity of the MLN is not yet reached. The most re-
which is just the original Gaussian and describes the chand®arkable feature of the distribution of local fields for a
that a randomly found IR witth,>0 is legal. Ifh, andh;  Perceptron above saturation minimizing the number of mis-
differ in sign the IR is illegal and the couplindg have to be ~ classified inputs is @ap separating positive from negative
modified until one of the hidden units changes sign. In arvalues. Being intimately related to the failure of any finite
optimal learning scenario the local field with the smallestlevel of RSB for this problem this gap is believed to exist
magnitude would be selected and the corresponding couplingven in the solution with continuous R$B2]. On the other
vector would be modified such that the field just barelyhand, none of the distributions for MLN showed a gap.
changes sign. Hende, remains still unmodified if eithen, As should be clear from the above qualitative discussion
or hy is smaller in absolute value which gives rise to thethe reason for this is quite simple. The single perceptron
second term in Eq24). Finally, if really h, is selected for @bove saturation has to reject some inputs as not correctly
the sign change, which will happen with probability 1/6 for cIaSS|f|ab_Ie. In order to ket_—:-p the n_umb_er of these errors
symmetry reasons, it will after learning be either slightly Smallest it chooses those with negative fields of large abso-
smaller or slightly larger than zero, which is the origin of the lute value. Inputs with initially only slightly negative local
last two terms in Eq(24). f|eld§ will be learned whe'reby their local fields shift to val-
With a similar reasoning it is possible to rederive the RSUES just above zero. In this way the gap occurs. In MLN, on

result for thecoMMITTEE machine. Again it is sufficient to the other hand, there is no reason to shift all negative local
consider the case=+1. If h;>0 initially it will not be fields of small absolute value because the correct output may

modified, which gives rise to the last term in E83). If, on  be realized by the other hidden units. Therefore one will not

the other handh, <0, prior to learning it will not be modi- find an interval ofh values for whichp(h) is st_rictly zero.
fied only if bothh, andh; are either positive from the start On the other hand, the tendency that predominantly fields of
or easier to make positive thdm. Hence a negativl, sur- §mal| absolute value will be_ modified m_thg Iea}rnmg process
vives the learing process if the other two fields are botHS cléarly shown by the dips of the distribution functions
larger. This is described by the first term in E83). Finally, ~aroundh=0 (cf. Figs. 1-3.

with probability 5/24 we find thah,<<0 and eithemh, or h;

is even smaller tham,; and therefore harder to correct. In

this case the learning would shift; to positive values as B. Replica symmetry breaking

described by the second term in E83). The resulting dis- Let us now discuss how the above results get modified by
tribution of local fields will hence have a dip for negative RSB. The analytical and subsequent numerical analysis of
values of small absolute value clearly visible in Fig. 1. Egs. (16)—(19) for the K=3 machines under consideration

The case of theND machine is the simplest. The output needs some care in order not to miss the various singular
o=+1 requires all local fields to be positive. Hence positivecontributions. We have first to determine the values of the
fields are not modified, negative ones are shifted for8-  order parameters at the saddle point using @§). In the
sulting immediately in Eq(25) which is, of course, identical saturation limitq;—1, [® g(o)]™ is dominated by one
to the result for the single-layer perceptrptb,16. In the  specific LIR which is selected among all other LIR by the
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TABLE |I. SaturatedK =3 machines: Integrated features of the probability distribugim) of the local
field. Corrections by one-step RSB are given in percent of the respective RS value. Dashes indicate that a
respective singular contribution does not ocGmMMITTEE) or that we found no RSBanD).

Negative non- Singular Singular Positive non-
zero fields contribution contribution zero fields
lim,_,of ~Ip(h)dh 3-(h) 8:.(n) lim .o/ j4p()dh
K =3 machine RS 1-RSB RS 1-RSB RS 1-RSB RS 1-RSB
COMMITTEE 7124 —-1.9% - - 524 —42.3% 1/2 +18.9%
PARITY 5/12 +10.3% 1/12 —51.8% 1/12 —-51.8% 5/12 +10.3%
AND 1/4 - 1/48 - 1/4 - 23/48 -

sign and absolute value of the compound variablgs which as the complement of the previous solution space must

=ViVGo+ ZkVa1—Go. P r(0)]™ either tends to 1 or be- be connected too.

comes exponentially small in one or more compound vari- We have finally to clarify how much the modifications

ablesv,.. Transforming the integration from, space tov,  found for the distributions of local fields will change the

space allows us to reduce tliefold z integral to a one- probabilities of the internal representations and the correla-

dimensional integral. This is performed numerically by tion coefficientsc,, depending only on thsign of the local

Rhomberg integration whereas the outgr integrals are fields.

done using Gauss-Legendre quadraflr@. This question is, in fact, nontrivial only in the case of the
‘The saddle point equatiofi9) is solved with a standard comwiTTEE machine. For thenp machine no RSB occurs at

minimization routine(Powells method in two dimensions || and for thepARITY machine the correlation coefficients

[18]). The values we get for the order parameters and for thg o completely determined by the symmetry of the Boolean
storage capacity are consistent with those obtained ear"efunction F between hidden units and output.

For theK=3 PARITY machine we findjp,=0, w=67.2, and

RSB For thecommITTEE machine we find that the probability
aC

=5 in agreement witl{8]. In the case of the< :S?é of the LIR (+,+,+) is shifted from its RS value 0.1250 to
COMMITTEE machine we geto=0.64, w=21.2, andac™" (1417 which is an increase by roughly 13%, whereas the
=3.14, a result somewhat larger than reported previously,opapility of the three remaining LIRconsisting of two
[9,10]. TheK =3 anD machine finally does not show RSB at y;ses and one minus eadh reduced by 1.9% from 0.2917
aIIAN%nd we find accordinglygo—1, w—eo together with 5 0 2861. Qualitatively this means that more inputs are
ag =131 stored with the LIR(+,+,+) than the fraction 1/8 that had

In a second step, we use these values of the order parafis LIR already by chance before learning. The learning
etersw,q, to calculate the respective distribution of local process hence does not shift illegal IR just up to the decision
fields (16). The distribution functiong(h) obtained in this  poundary of the BooleaF but in some cases the correlations
way are included as full lines in Figs. 1-3. Table | quantifiespetween inputg and couplings) neglected in RS allow even
the main changes. The main modification of the distributionthe safer LIR(+,+,+).
functions of local fields that occurs in one-step RSB is @ ysing Eq.(22) we can now also calculate the correlation
redistribution of probability from theS peaks ath=+0 to  coefficients and find that, increases by 2.7% from its RS
the continuous part of the distribution around zero resulting,5|,e 5/12¢, decreases in absolute value by 13.3% from its
in a reduction of the weight of the singular parts of roughly g yalue— 1/6, andc, decreases in absolute value by 4.5%
50%. This gives rise to a less pronounced dip of the distrifom jts RS value—3/4. This confirms the prediction ¢6]
bution functions arountt=0 and is qualitatively similar to 4t although crucial for the storage capacity RSB will have

the RSB modifications for a single perceptron above saturgsply a minor influence on the correlation coefficients in
tion [11]. From the results for theAarITY machine it is con-  \N.

ceivable that the central peak may get reduced further if
higher orders of RSB are included and that it might eventu-
ally disappear completely in the full Parisi solution using
continuous RSB. For all machines the probability of fields Generalizing the calculation of the distribution function of

IV. SUMMARY

with large absolute values is hardly affected by RSB. local fields for the single-layer perceptron we introduced a
For the AND machine we did not find RSB at all. The general formalism to determine the joint probability distribu-
numerical solution of the saddle point equations only gaveion p(h,, ... hk) of local fields at theK hidden units of a

the RSB resulgy=1, w—x. We therefore suspect that rep- two-layer neural network of tree architecture with fixed
lica symmetry is correct for thenD machine. This is also in  Boolean function between hidden layer and output both in
accordance with the rule of thumb that RSB is necessary ifeplica symmetry and in one-step replica symmetry breaking.
the solution space is disconnected. In t machine the Explicit results were obtained for theaRITY, COMMITTEE,
output c=+1 can be realized only by one LIR which and AND machine withK=3 hidden units in the saturation
clearly corresponds to a connectél/en convek solution  limit a— a.. Although the individual perceptrons are by far
space. The outputr=—1 is realized by all remaining IR, overloaded there is no gap in the distribution of local fields
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as known from a single perceptron above saturation. There iwhere Q and A denote the symmetric matrice®3?=1
no RSB for theand machine which we attribute to the con- Q2*P=q2" and A*®=iE?, A%*°=—iF 2P Moreover,
nected solution space for this architecture. For pheiTy

andcoMMITTEE machine we find as a result of RSB a slight d)\adx
redistribution of probability from the singular parts lat p(h|o)= j H K p<2
+0 to the continuous part around the origin. The correlation k.a
coefficientsc,, characterizing the correlations between the

legal internal represgntati_ons are not modified_by RSB for — 2 kakqab>H O (oF({sgrrd)}))
the PARITY machine since in this case they are fixed already a

by symmetries. For theommITTEE machine the changes of

1
XN 5062

1
the correlation coefficients are rather small and the RS re- X 5(h=Ary), (A5)
sults derived inf6] may serve as useful approximations.

drgdxg Caa 1o
APPENDIX: REPLICA CALCULATION Gl(Qlo'):f g ex k% X 5 (%)
In this appendix we give some more details on the calcu-
Iation_ of the d_istributior_1 functiop(h) of the local fields at — z Xkaqab)H O(oF({sgriad)})),
the hidden units following Gardner's approddb]. a
In.troducing the replica trick B=1lim,_,Z"" ! into Eq. (AB)
(4) yields

(A)= H exp(—— 2 JaADIP ) (A7)
p<h>=lim<< f E du(I)du(Np®) ° J ‘

n—0

L In the limit N—oo the integral in Eq(A4) is dominated
<1 ®(UVF({SQTT7\|Z'a)}))5(h—7\1'a)>> , by the saddle point values of the order paramefgys F2°,
na {&ha” andq?P. Solving the saddle point equation with respecEfo
(A1) andF2® yields A= Q1. Hence Eq(A4) takes the form
with replica indexa=1,... n. In the integration measures _ b
(6), (7) we replace thes functions by their integral form p(h)=lim f al;[b dg®
n—0
Ea
5( (38— E) _ i—exp{ _ EEa( - } X((p(h|o))) expI(N/2)Indet(@) + (N
—1){(InG4(Qla)))]. (A8)
sl a2 V\/E _ dxﬁ’aex p(h|o) can be calculated by assuming either RS or one-step
kék = o &P RSB for the matrixQ resulting in Eqs(12) and(16), respec-
tively.
| ixza yra_ agv\/E The remaining saddle point condition for the matq'ikb
k k ' has in one-step RSBL5) the form
(A3)
Yo
We now perform the average over the Gaussian distribEXqu,ql,m[Z[l_q Fm(d—90)]
uted patternst, ;,i=1,... N/K and introduce the overlaps ' e
ag —Jan/(N/K) of dlfferent replicas of the same percep-
tron J, as well as its conjugated variabR®. From the ~onl1+ m(ql_qO))-i-lm(l—q )
assumed permutation symmetry of the Boolean funckon 2m 1-q; 2 !

with respect to all hidden units we infeg2’=q?®, F2°

=F2 andE2=E?for all k=1,... K. This gives rise to the +E<<JH Dykln“ 11 DZk(‘bLIR(U))m]>> }
m k k

form

_ dE? doPPdFaP
p(h)"'mJH Ja<b 27(KIN)

n—0

(A9)

It determines a set of order parametéts ,qq,m} for
x{(p(hla))), every pattern load below the storage capaecitg .. The
< exp[(N/2)tr(OA) + (aN—1)((In G abbreviation® | g(o) is defined by Eq.(18). The angular
PLINI2INQA)+ (a H(InGa(Qlo))). brackets(- - -)), indicate the average over the two possible
+NInG,(A)], (A4)  outputso==*1.
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